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Abstract

This report presents our approach to the Brick by Brick 2024 Chal-
lenge, focusing on multi-label classification of smart building sensor
data. We developed a robust preprocessing pipeline utilizing TS-
Fresh for feature extraction, followed by a Random Forest Classifier
with Label Powerset transformation. Our methodology effectively
handled the complex task of classifying time-series data into 94
Brick schema sub-classes, addressing challenges such as irregular
sampling rates and hierarchical label relationships. The final model
demonstrated strong performance across cross-validation, evalua-
tion, and leaderboard scores, highlighting the effectiveness of our
feature engineering and classification approach.
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1 Introduction

The Brick by Brick 2024 Challenge addresses a critical need in
smart building management: the automated classification of IoT
sensor data into standardized categories. With buildings consuming
a significant portion of global energy, efficient data organization
is crucial for optimizing energy use. Our task involved classifying
time-series data from building sensors into 94 distinct Brick schema
sub-classes, creating a standardized metadata tagging system. Key
challenges included:

e Processing irregular time-series data from multiple sensors

o Addressing a multi-label classification problem with 94 pos-
sible labels

e Handling hierarchical label relationships

e Developing a solution generalizable across different build-
ings and time periods

Our approach centered on extensive feature engineering using TS-
Fresh, followed by a Random Forest Classifier with Label Powerset
transformation. We explored various models and techniques, in-
cluding AutoGluon and a multi-level approach, before arriving at
our final solution.
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2 Methods

2.1 Feature generation

All time-series are converted to parquet files and sent to an Azure
Blob Storage container to allow distributing computing. Our general
idea was to convert the time-series into tabular features that can
then be used in a typical classification problem. Differentiating data
between different sensors require to pay attention to the magnitude
of the time-series (min, max, mean, ...) but also to the shape of the
curves. An additional challenge is provided by the fact that the
time-series have different scale and resolution. To mitigate this
issue, we generate features using the TSFresh library in two steps
(1]:
o Generate "magnitude-like" features (min, max, mean, vari-
ance...) from the raw time-series
o Generate "shape-like" features (fast fourier transform, ...)
from the time-series scaled using Robust scaling

This computation is performed on a Dask cluster in Microsoft Azure
using Coiled (https://www.coiled.io/). With six virtual machines
of size Standard_F16s_v2 on Azure, the computation took about
16h for the test data, for each of the two steps. The idea behind this
process is that this could help with generalization as the shape-like
features are very dependent on resolution and scale.

Through this process, we obtained 777 features. We trained a
Random Forest Classifier and use the Impurity-based feature im-
portances to identify a set of relevant features. In addition, features
that lead to very large float values are dropped to prevent numerical
issues. Finally, features with many NaN values are dropped. We
finally select the top 60 and top 100 features to use in training and
cross-validation.

2.2 Model selection and training

One of the challenges in this classification problem is that most
machine learning libraries offer limited support for multi-label
classification. They often rely on converting the problem into a
multi-class one using a "one-vs-rest" approach, which can fail to
capture relationships between labels. To address this, we use the
Label Powerset method provided by the scikit-multilearn library [2].
Label Powerset is a problem transformation technique that converts
amulti-label problem into a multi-class problem by training a single
multi-class classifier on all unique label combinations found in the
training data. With this transformation, we evaluate the macro
F1-score across various machine learning models:

e Logistic Regression

e Support Vector Machines
o k-Nearest Neighbors

e Random Forest

e XGBoost
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e LightGBM

For each model, we split the data into training and evaluation sets us-
ing a hierarchical approach that ensures all classes are represented
in both splits. Tree-based models, particularly Random Forest and
XGBoost/LightGBM, achieved significantly better results, making
them the focus of our hyperparameter tuning efforts.

Models are trained using cross-validation with the IterativeStratifi-
cation method from the scikit-multilearn package. This approach en-
sures that each fold maintains a balanced representation of higher-
order label combinations. For each fold, we generate probability
scores for each class and compute the binary Fl-score at differ-
ent thresholds. After iterating through all folds, we determine the
threshold that maximizes the average binary F1-score for each class
and then compute the overall macro F1-score for training.

3 Final solution

The best model was Random Forest Classifier with the following
optimzied hyperprameters:

Trovato et al.

e n_estimators: 1000

e max_features: "sqrt"

e max_depth: 13

e min_samples_split: 2

e min_samples_leaf: 1

e criterion: "entropy”

This model generated the below scores (macro F1), combined

with the LabelPowerSet:

e Cross validation score: 0.694
e Holdout set score: 0.725
e Leaderboard: 0.513

The leader board result is provided in figure 1.
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Average Precision per Class (Sorted)
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Figure 1: Visualisation of the submission.
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